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Abstract: hi this paper, formulas are developed for the calculation of the effective 
radius of the bearing friction forces on the rotating contact surface in threaded fasteners. 
These formulas provide a more accurate estimation of the underhead bearing friction 
torque component in threaded fastener applications. This enhances the reliability, safety, 
and the quality of bolted assemblies, especially in critical applications.   It is well known 
that the torque-tension correlation in threaded fasteners, and the resulting joint clamping 
force, is highly sensitive to friction torque components: under the turning head and 
between threads. This analysis focuses on the bearing friction torque component under 
the turning head of a threaded fastener. Further, it analyzes the error contained in the 
current practice when an approximate value, equal to the mean contact surface radius, is 
used instead of the actual bearing radius. The new formulas for the bearing friction 
radius are developed for a mathematical model of a bolted joint using four different 
scenarios of the contact pressure distribution under the rotating fastener head or nut.   The 
effect of the radially varying sliding speed over the rotating contact surface is analyzed 
and compared with a constant friction coefficient scenario.  Numerical results and error 
analysis are presented in terms of a single non-dimensional variable; namely, the radii 
ratio between the outside and the inside bearing area. 
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Nomenclature: 

D nominaldiameter of the fastener 
r^ effective radius of the contact area under the turning head or nut of the fastener 

r effective thread contact radius 

F fastener tension 
P underhead contact pressure 
r^ mean of the contact area under the turning fastener head (or nut) 

y ratio of the maximum to minimum contact radii 
a exponent 
p maximum contact pressure 
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P^     minimum contact pressure 
r        radial position from the fastener center 
//j       coefficient of friction between the turning head/nut and the bearing surface 

/y,       coefficient of friction between male and female threads 

P        half of the thread profile angle 
p        thread pitch 

1 Introduction 

The safety, reliability, and the quality of bolted assemblies are significantly affected by 
the level and by the stability of the fastener tension which is most commonly achieved by 
either turning of the head or the nut of the threaded fastener. In most appUcations, a very 
high percentage of the input torquing power is consumed in overcoming the combined 
effect of two fiictional torque components. The first is the bearing fiiction torque 
component which must overcome the fiiction between turning head or nut and the surface 
of the bolted assembly. The second is the thread fiiction component that goes into 
overcoming thread fiiction. After overcoming bearing and thread fiiction, only a much 
smaller percentage of the input torquing power is the usefiil part that creates the fastener 
elongation and tension, and simultaneously produce the clamping force in the joint. The 
torque-tension relationship in threaded fastener applications is highly sensitive to fiiction 
torque variations. Moderate fiiction torque variations, which are particularly common in 
industrial applications, have significant impact on both the level and the stability of the 
clamping force in bolted assemblies [1-3].   It should be pointed out that the fiictional 
torque components [4] depend on the bearing and thread fiiction coefficients, thread and 
fastener geometry, and on the fastener tension [4]. 

Inaccuracies in determining the friction torque components result in one of two 
consequences: either an overestimation or an underestimation of the torque components. 
On the one hand, an overestimation of the fiictional torque components will lead to the 
underestimation of the actual fastener tension and clamp force in the joint. This may lead 
to material failure due to overstressing. On the other hanH, an underestimation of the 
fiiction torque components results in achieving lower fastener tension and clamp force in 
the joint. That has the potential to cause unexpected fastener loosening, joint separation, 
leakage, rattle, and fatigue failure. 

The torque tension relationship is often simplified by using a tabulated constant known as 
the nut factor. Juvinall [3] provides an approximate value of 0.2 for the nut factor, but 
cautions against using it for critical joints without providing guidance as to establish a 
more reliable yet practical torque-tension relationship. Bickford [1] provides some mean 
values of the nut factor for various combinations of joint materials and surface 
conditions. However, the scatter in the nut factor is too great to render it reliable, 
particularly in critical joints. 



In the absence of prevailing torque, and neglecting the three dimensional effect of the 
helix angle of the thread profile, Motosh [5] provided a more accurate torque-tension 
relationship for a threaded fastener as follows 

T = [-^^-^ + MMF   , (1) 
2;r    cos/j 

where, Tis the input tightening torque applied to the fastener head of nut, F is the 
fastener tension, p is the thread pitch, /^, is the coefficient of friction between male and 

female threads, ju^ is the coefficient of fiiction between the bearing surfaces under the 

turning fastener head or nut, r, is an effective contact radius between threads, r^ is an 

effective bearing radius of the bearing contact area under the turning head or nut, and ^ 
is half of the thread profile angle which is 30° for standard UN and ISO threads. 

Equation (1) may be expressed as 

T = T^+T,+T,       , (2) 

where T^ is the pitch torque component that creates the fastener tension and joint 

clamping force F. The pitch torque component is given by 

T^'^F, (3a) 

T, is the torque component that overcomes the fiiction between male and female threads, 
and is given by 

T,=-^F, (3b) 
cosp 

and Jj is the bearing fiiction torque component that overcomes friction between the 

turning fastener head or nut and the clamped joint surface, and is given by 

T,=M,r,F. (3c) 

In order to calculate the bearing fiiction torque component, Shoberg [6] and others use 
the mean radius of the contact area in equation (3c), in place of an actual effective radius 
rb. In this paper, however, new formulas are introduced for the bearing radius r^ in order 
to be used for the calculation of the bearing friction torque component Tt according to 
equation (3c), for each of the four models of the underhead pressure distribution. 
Additionally, the new formulas take into accoimt the effect of the varying sliding speed. 



Neglecting the hole clearance, the mean contact radius is given by 

(4) 

where D is nominal size of the fastener and y is the ratio of the outside to inside radii of 
the contact area as shown on Figure (1). In addition, a constant coefficient of friction 
between the sUding surfaces is normally used for//^ in order to calculate the bearing 

friction torque component according to Equation (3c). 

Figure 1   Bolted Joint Model 

The formulas are valid for various sizes of standard hexagonal or flange head or nuts. 
Finally, the error infroduced by using the mean radius rm in order to determine the torque 
component Tb instead of using the exact value of rb in equation (3c), is discussed in this 
paper. 

2 Static Equilibrium Considerations 

At the end of the tightening process of a threaded fastener, the relationship between the 
fastener tension F and the underhead contact pressure p is given by 



F =    ^PdA = In ^rPdr. (5) 
contact 

In general, the contact pressure p is not uniform. 

The amount of torque consumed to overcome the bearing friction between the head/nut 
and the clamped surface is 

T, = l(M,PdA)r (6) 

T,=2n\Pfi,r'dr     , (7) 

where yn, generally varies over the fastener underhead contact area due to the varying 
sliding speed of various contact points. During the tightening of a threaded fastener by 
turning its head (or nut) at a known angular speed, the linear speed of various sliding 
points on the contact surface will vary linearly with the radial location from the center of 
the fastener. A more accurate calculation of the bearing friction torque component will 
have to take the variation in the friction coefficient Hb. 

One way to incorporate the effect of the varying sliding speed on the bearing friction 
coefficient [7] is by using 

Mt=M-y"   , (8) 
r 

where //,. is //^ at r = r..   Substituting from equation (8) into equation (7), the torque 
coiiiponeiit I'b is 

T,=2nrrju,]r''Pdr (9) 

On the other hand, an average value of /j^ would seem appropriate to use in equation 
(3c). Then 

^*  = Maverage^bf^       ' (10) 

where 



M, average yr- 

* average = A 
1.052(/''-l) 

(11) 

Finally, the substitution of equations (5) and (1) into equation (10) and comparing the 
resulting expression for Tb with that given by equation (9) yields a mathematical 
expression for the effective bearing friction radius rb as follows 

ir'^Pdr 
0.1        J _0.95{r-l)r;    ,, 

(r' -1) 
(12) 

^rPdr 

Had the sliding speed effect on the coefficient of friction been neglected [1], the 
expression for rb would have been 

jr^Pdr 

n = 

jrPdr 

(constant /u^) (13) 

The percent error introduced by using the mean contact radius rm in place of rb in 
equations (12) and (13) is determined by 

Error{%) = 0 m (100) = 
'b   J 

(100) (14) 

where rm, rb are determined by equations (4), (12), and (13) for various scenarios of 
underhead contact pressure distribution. 

3 Effect of Underhead Pressure Distribution 

Four scenarios of underhead pressure distribution are presented in this paper. A uniform 
pressure distribution simulates the use of a strong steel bolt and nut to clamp on a much 



weaker clamping surface such as plastic surfaces or soft washers. Other pressure 
distributions considered would simulate contact stress conccjitratioii at the edge of the 
fastener hole, or may by contrast reflect the zero pressure conditions at minimum or 
maximum radii of the contact area. 

Model 1: Uniform Underhead Pressure 

\ P = Poaverage 

Figure 2 Constant Underhead Pressure 

If the contact pressure p is uniform as shown in Figure 2 its value would be given by 

F 

Substituting the constant pressure equation (15) into equation (12) yields 

_0.656(x"-l)r, 

From equations (16) and (4), the ratio Tm/rb is given by 

^. _(/'-i)(r+i) 
r,      1.312(r^'-l)' 

(15) 

(16) 

(17) 

The percent error is determined according to equation (14) and shown on Figure 3. 
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Figure 3 Percent error:   Constant Underhead Pressure Distribution Model 



Model 2 Sinusoidal Underhead Pressure 
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Figure 4      Sinusoidal Underhead Pressure 

The sinusoidal contact pressures shown in Figure (4) may be expressed as 

P = Pr^. Sin 
7t{r 

rXr-\) 
(18) 

The peak pressure Pmax is obtained by substituting equation (18) into the static 
equilibrium equation (5), which yields 

F 
(19) P    = 

^rt{r-\) 

Equations (4), (12), (18), and (19) give the effective bearing friction radius as follows 

0.95(r^-l)r, 
fr'" sin[ 

0.1        J 
]dr 

Jrsin[ 
A;(r-i) 

(20) 

]dr 

The integrals on the right hand side of the equation yield long expressions that are 
liuluiAlj di.pUiuUA Oix tlx^ iiiiidc radlii^ t^fwo^.t^i^t ui^a »„ v.!il^l: c»juals the nominal 
radius of the fastener, approximately. However, the ratio rm/rb is independent of the 



fastener radius r; by itself, and depends only on the radii ratio y. The percent error is 
calculated according to equation (14), and is depicted by Figure 5. 
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Figure 5 Percent error:   Sinusoidal Underhead Pressure Distribution Model 

Model 3 Exponentially Decreasing Pressure 

Figure 6 shows a pressure model in which the underhead pressure decreases 
exponentially from P,.^ at the cd^" of the hole to Pmin at the outside radiii'^ of tVo contact 
area under the turning fastener head or nut. This pressure distribution is given by 

P = P^e- max [0<r<yr.-r,], (21) 

where a is a positive exponent, and r' is radial distance measured from the edge of the 
hole. 

It must be noted that the relation between the ratio Pmin/Pmax and the exponent a is given 
by 

min    _     -a/i(r-l) (22) 



The exponent a is obtained from equation (22) for various ratios of Pmin/Pmax as follows 

P 
In- ™'' 

a = ■ 
P^. 

nir-^) 
(23) 

mm 

Figure 6     Percent Error: Exponentially Varying Underhead Pressure 

Ihe selected range for the pressure ratio is  0.01 < P .   IP^, < 1 . The low limit of the 

selected range simulates a rapid exponential decrease of the contact pressure, in which 
the high limit simulates the case of uniform contact pressure (Model 1). Combining 
equations (4), (12), (22), and (23) yields 

rb = 
Q.95{y'-Xyr     ', 

J^..9^-<.(-,)^^ 

r' -1 
jre-'^'-'^dr 

(24) 



Equation (24) is numerically integrated for various ratios of Pmin/Pmax, and the results of rb 
(y + l)r. 

are once again compared with the mean radius r„ = '-.   The percent error in the 

beraing friction torque component that results from using rm is shown in Figure 7. 

Figure 7  Percent error: Exponential Underhead Pressure Distribution Model 
(curves with and without dots represent results 

for uniform vs. radially varying friction, respectively) 

Model 4 Linearly Decreasing Pressure 

The final scenario considered in this paper depicts a contact pressure distribution that 
linearly from Pmax at the edge of the hole to zero at the outer radius of the contact surface, 
as shown in Figure 8. The contact pressure at any radial position r is given by 

(25) 



Figure 8      Linearly Decreasing Underhead Pressure 

The maximum contact pressure Pmax is determined by substituting equation (25) into 
equation (5). The effective bearing radius is obtained by using equation (12) and (25) as 
follows 

n,= 
0.95/^.(^-1)        6^'   -23.4;'+ 17.4 

r"-i 11.31;''-33.93;^ +22.62 
(26) 

and the ratio rm/rb becomes 

/•„ _ {y'-^ -l)(n '^yy' -■^'^ o-\y + 'i^ f--^) 

~^~    1.90(;'-l)(6;'"-23.4x + 17.4) 
(27) 

Had the effect of the sliding speed on the bearing friction coefficient been neglected, this 
ratio would be given by 

r,     r'+2r + 3 
(Constant friction) (28) 

Numerical results for this model of pressure distribution are shown on Figure 9. 
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Figure 9  Linearly Varying Underhead Pressure Distribution Model 

4 Results and Discussion 

For the four scenarios of the contact pressure distribution, expressions for the effective 
radius rbof the bearing friction forces are provided by equations (16), (20), (24), and (26). 
By comparing the effective radius rb to the geometric mean radius rm of the bearing area, 
the percent error is calculated according to equation (14).   This error is introduced by 
using the latter radius (rm) in order to determine the bearing friction torque component Tb 
given by equation (3c). On the one hand, a positive percent error indicates an 
underestimation of the bearing friction torque component when the mean radius Tm is used 
instead of rb. This will result in a lower torque-tension ratio for the fastener and it will 
result in a lower clamping force in a bolted joint. On the other hand, a negative error 
indicates an overestimation of the bearing friction that ultimately leads to higher torque- 
tension ratio in the fastener, and to a higher clamping force in the joint. 

Figures 3, 5, 7, and 9 show the percent error in the bearing friction torque component, 
that results from using rm as an approximation for rb. The error is expressed in terms of a 
single non-dimensional variable y, which describes the ratio of the outside radius to 
inside radius of the bearing area.   The ratio y is approximately equal to 1.5 for standard 
hexagonal fastener heads and nuts; it is smaller for socket head fasteners and it takes a 
value between 2 and 3 for most flanged head and flanged nut applications. 

For the case of a constant underhead prc;>cure, the percent error introduced by using rm 
instead of rb, in the calculation of the bearing friction torque component, is shown on 



Figure 3. For most standard threaded fasteners, the error is less than 5% and the effect of 
taking the variation in sUding speed into account is insignificant.   Similar results are 
shown in Figure 5 for the sinusoidal pressure distribution scenario. 

As for the exponential underhead pressure distribution, Figure 7 shows that the percent 
error is significantly influenced by two additional factors; namely, by the rate at which 
the underhead pressure is varied, and by whether the friction variation due to the variable 
sliding speed has been taken into account. For a given beeiring area, a small Pmin/Pmax, 
produces a significantly larger percent error. For the most commonly used fastener 
applications y falls between 1.5 and 3. As it can be seen on Figure 7, the magnitude of 
the error in such fastener applications is as high as 33%, when Pmin/Pmax ratio of one 
percent and a uniform bearing fiiction model is used. The same figure shows that the 
error drops to 28% by considering a variable bearing fiiction model, in which the effect 
of a radially varying sliding speed on the bearing fiiction coefficient has been taken into 
account. 

Figure 9 provides the error analysis for the case of a linearly decreasing fastener 
underhead pressure model. The magnitude of the maximum error for most common 
fastener applications about 10% and the effect of the variation in bearing fiiction is 
insignificant. Further, the error results of this model are closest to those on Figure 7, with 
a Pmin/Pmax equal to 0.1. 

5 Conclusions 

The new formulas developed in this paper provide a more accurate calculation of the 
fastener underhead bearing fiiction torque component. This will enhance the quality, 
safety and the reliability of many mechanical and structural components. The use of the 
mean radius of the contact area should be replaced by using formulas developed in this 
paper, for determining the actual bearing fiiction radius. Numerical results suggest that 
the improved accuracy is more noticeable for applications in which the ratio y of the 
contact radii is higher. Similarly, the effect of the variable sliding speed on the bearing 
fiiction torque component increases with increasing the bearing radii ratio y • Finally, the 
numerical results show that the modeling of the fastener underhead pressure has a 
significant effect on the bearing fiiction torque component and on the overall fastener 
torque-tension relationship. This has direct impact on the level of the clamping force 
achieved in the joint when the fastener is initially tightened to a given torque level. 
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